home *** CD-ROM | disk | FTP | other *** search
- *
- ************************************************************************
- *
- SUBROUTINE ZHER ( UPLO, N, ALPHA, X, INCX, A, LDA )
- * .. Scalar Arguments ..
- DOUBLE PRECISION ALPHA
- INTEGER INCX, LDA, N
- CHARACTER*1 UPLO
- * .. Array Arguments ..
- COMPLEX*16 A( LDA, * ), X( * )
- * ..
- *
- * Purpose
- * =======
- *
- * ZHER performs the hermitian rank 1 operation
- *
- * A := alpha*x*conjg( x' ) + A,
- *
- * where alpha is a real scalar, x is an n element vector and A is an
- * n by n hermitian matrix.
- *
- * Parameters
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the upper or lower
- * triangular part of the array A is to be referenced as
- * follows:
- *
- * UPLO = 'U' or 'u' Only the upper triangular part of A
- * is to be referenced.
- *
- * UPLO = 'L' or 'l' Only the lower triangular part of A
- * is to be referenced.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix A.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * ALPHA - DOUBLE PRECISION.
- * On entry, ALPHA specifies the scalar alpha.
- * Unchanged on exit.
- *
- * X - COMPLEX*16 array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCX ) ).
- * Before entry, the incremented array X must contain the n
- * element vector x.
- * Unchanged on exit.
- *
- * INCX - INTEGER.
- * On entry, INCX specifies the increment for the elements of
- * X. INCX must not be zero.
- * Unchanged on exit.
- *
- * A - COMPLEX*16 array of DIMENSION ( LDA, n ).
- * Before entry with UPLO = 'U' or 'u', the leading n by n
- * upper triangular part of the array A must contain the upper
- * triangular part of the hermitian matrix and the strictly
- * lower triangular part of A is not referenced. On exit, the
- * upper triangular part of the array A is overwritten by the
- * upper triangular part of the updated matrix.
- * Before entry with UPLO = 'L' or 'l', the leading n by n
- * lower triangular part of the array A must contain the lower
- * triangular part of the hermitian matrix and the strictly
- * upper triangular part of A is not referenced. On exit, the
- * lower triangular part of the array A is overwritten by the
- * lower triangular part of the updated matrix.
- * Note that the imaginary parts of the diagonal elements need
- * not be set, they are assumed to be zero, and on exit they
- * are set to zero.
- *
- * LDA - INTEGER.
- * On entry, LDA specifies the first dimension of A as declared
- * in the calling (sub) program. LDA must be at least
- * max( 1, n ).
- * Unchanged on exit.
- *
- *
- * Level 2 Blas routine.
- *
- * -- Written on 22-October-1986.
- * Jack Dongarra, Argonne National Lab.
- * Jeremy Du Croz, Nag Central Office.
- * Sven Hammarling, Nag Central Office.
- * Richard Hanson, Sandia National Labs.
- *
- *
- * .. Parameters ..
- COMPLEX*16 ZERO
- PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
- * .. Local Scalars ..
- COMPLEX*16 TEMP
- INTEGER I, INFO, IX, J, JX, KX
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC DCONJG, MAX, DBLE
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( .NOT.LSAME( UPLO, 'U' ).AND.
- $ .NOT.LSAME( UPLO, 'L' ) )THEN
- INFO = 1
- ELSE IF( N.LT.0 )THEN
- INFO = 2
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 5
- ELSE IF( LDA.LT.MAX( 1, N ) )THEN
- INFO = 7
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'ZHER ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( ( N.EQ.0 ).OR.( ALPHA.EQ.DBLE( ZERO ) ) )
- $ RETURN
- *
- * Set the start point in X if the increment is not unity.
- *
- IF( INCX.LE.0 )THEN
- KX = 1 - ( N - 1 )*INCX
- ELSE IF( INCX.NE.1 )THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of A are
- * accessed sequentially with one pass through the triangular part
- * of A.
- *
- IF( LSAME( UPLO, 'U' ) )THEN
- *
- * Form A when A is stored in upper triangle.
- *
- IF( INCX.EQ.1 )THEN
- DO 20, J = 1, N
- IF( X( J ).NE.ZERO )THEN
- TEMP = ALPHA*DCONJG( X( J ) )
- DO 10, I = 1, J - 1
- A( I, J ) = A( I, J ) + X( I )*TEMP
- 10 CONTINUE
- A( J, J ) = DBLE( A( J, J ) ) + DBLE( X( J )*TEMP )
- ELSE
- A( J, J ) = DBLE( A( J, J ) )
- END IF
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40, J = 1, N
- IF( X( JX ).NE.ZERO )THEN
- TEMP = ALPHA*DCONJG( X( JX ) )
- IX = KX
- DO 30, I = 1, J - 1
- A( I, J ) = A( I, J ) + X( IX )*TEMP
- IX = IX + INCX
- 30 CONTINUE
- A( J, J ) = DBLE( A( J, J ) ) + DBLE( X( JX )*TEMP )
- ELSE
- A( J, J ) = DBLE( A( J, J ) )
- END IF
- JX = JX + INCX
- 40 CONTINUE
- END IF
- ELSE
- *
- * Form A when A is stored in lower triangle.
- *
- IF( INCX.EQ.1 )THEN
- DO 60, J = 1, N
- IF( X( J ).NE.ZERO )THEN
- TEMP = ALPHA*DCONJG( X( J ) )
- A( J, J ) = DBLE( A( J, J ) ) + DBLE( TEMP*X( J ) )
- DO 50, I = J + 1, N
- A( I, J ) = A( I, J ) + X( I )*TEMP
- 50 CONTINUE
- ELSE
- A( J, J ) = DBLE( A( J, J ) )
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80, J = 1, N
- IF( X( JX ).NE.ZERO )THEN
- TEMP = ALPHA*DCONJG( X( JX ) )
- A( J, J ) = DBLE( A( J, J ) ) + DBLE( TEMP*X( JX ) )
- IX = JX
- DO 70, I = J + 1, N
- IX = IX + INCX
- A( I, J ) = A( I, J ) + X( IX )*TEMP
- 70 CONTINUE
- ELSE
- A( J, J ) = DBLE( A( J, J ) )
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- *
- RETURN
- *
- * End of ZHER .
- *
- END
-